MA3218 Applied Algebra

Basic Number Theory

• Division algorithm: $\forall a \in \mathbb{R}, b \in \mathbb{N} : \exists !q, r \in \mathbb{Z} \text{ s.t. } a = bq + r \text{ and } 0 \leq r < b$

- GCD is divisible by other divisors: $d = gcd(a, b) \iff$ $d \mid a \text{ and } d \mid b \text{ and } (\forall c : c \mid a \text{ and } c \mid b \implies c \mid d)$
- GCD is linear combination: $\forall a, b \in \mathbb{Z}^* : d = \gcd(a, b) \implies \exists x, y \in \mathbb{Z} \text{ s.t. } ax + by = d$ In particular: $1 = \gcd(a, b) \iff \exists x, y \in \mathbb{Z} \text{ s.t. } ax + by = 1$
- Coprime properties: $\forall a, b, c \in \mathbb{Z}$: gcd(a, c) = 1 and $gcd(b, c) = 1 \implies gcd(ab, c) = 1$ $a \mid bc$ and $gcd(a, b) = 1 \implies a \mid c$ gcd(a, b) = 1 and $a \mid c$ and $b \mid c \implies ab \mid c$
- Multiplicative invertibility: $k \in \mathbb{Z}_n \text{ and } \gcd(k,n) = 1 \implies \exists x \in \mathbb{Z}_n \text{ s.t. } kx \equiv 1 \pmod{n}$

Finding x s.t.
$$19x \equiv 1 \pmod{391}$$
:

 $\begin{array}{c|c} 391 = 19 \times 20 + 11 & (7) \ 391 + (-144) \ 19 = 1 \\ 19 = 11 \times 1 + 8 & (-4) \ 19 + (7) \ 11 = 1 \\ 11 = 8 \times 1 + 3 & (3) \ 11 + (-4) \ 8 = 1 \\ 8 = 3 \times 2 + 2 & (-1) \ 8 + (3) \ 3 = 1 \\ 3 = 2 \times 1 + 1 & \longrightarrow & (1) \ 3 + (-1) \ 2 = 1 \end{array}$ $\therefore 19 \times (-144) \equiv 1 \pmod{391}$ $\therefore x \equiv -144 \equiv 247 \pmod{391}$

Groups

• **Definition**: Set G with binary op. satisfying:

- 0. Closure: Binary operation is well-defined over ${\cal G}$
- 1. Associativity: $\forall a, b, c \in G : (ab)c = a(bc)$
- 2. Identity: $\exists e \in G \text{ s.t. } \forall a \in G, ea = ae = a$
- 3. Invertibility: $\forall a \in G : \exists b \in G \text{ s.t. } ab = ba = e$
- Abelian group: Binary op. satisfies commutativity: $\forall a, b \in G : ab = ba$

• Some groups:

$$\begin{split} \mathbb{Q}^* &\coloneqq \text{multiplicative group of nonzero rationals} \\ U(n) &\coloneqq \{m \in \mathbb{Z}_n \mid \gcd(m, n) = 1\} = \text{group of units in } \mathbb{Z}_n \\ Q_8 &\coloneqq \{\pm \mathbf{1}, \pm \mathbf{I}, \pm \mathbf{J}, \pm \mathbf{K}\} = \text{quaternion group (non-abelian)} \\ \text{where } \mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{I} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \mathbf{J} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \mathbf{K} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \\ GL_n(F) &\coloneqq \{A \in \mathcal{M}_{n \times n}(F) \mid \det(A) \neq 0\} \text{ (non-abelian)} \\ SL_n(F) &\coloneqq \{A \in \mathcal{M}_{n \times n}(F) \mid \det(A) = 1\} \\ SL_n(F) \text{ is a subgroup of } GL_n(F) \\ T &\coloneqq \{z \in \mathbb{C} \mid |z| = 1\} = \text{circle group} \end{split}$$

• Product of finite order matrices can have inf. order: $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \implies A^4 = \mathbf{I}$ $B = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \implies B^3 = \mathbf{I}$ $\forall n \in \mathbb{N} : (AB)^n = \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix} \neq \mathbf{I}$

Subgroups

- **Basic subgroup test**: Is subset H a subgroup of G? $e_G \in H$ Binary op. closed in H $\forall h \in H : h^{-1} \in H$ \Leftrightarrow H is a subgroup of G
- Better subgroup test: Is subset H a subgroup of G? $H \neq \varnothing$ $\forall g, h \in H : gh^{-1} \in H$ \longleftrightarrow H is a subgroup of G

Cyclic Groups

- **Definition**: G is cyclic $\iff \exists g \in G \text{ s.t. } \langle g \rangle = G$
- Cyclic subgroup generated by $a: \forall a \in G:$ $\langle a \rangle := \{a^k \mid k \in \mathbb{Z}\} = \text{cyclic subgroup generated by } a$
- Every cyclic group is abelian
- Every subgroup of a cyclic group is cyclic
- Order of elements: If $G = \langle a \rangle$ and $n = |G| \neq \infty$ then: $\forall 0 \leq k \in \mathbb{Z} : o(a^k) = \frac{n}{\gcd(k,n)}$

• n^{th} roots of unity = $\{z \mid z^n = 1\}$ = $\{\cos\left(\frac{2k\pi}{n}\right) + i\sin\left(\frac{2k\pi}{n}\right) \mid k \in \{0, 1, 2, \dots, n-1\}\}$ primitive n^{th} roots of unity = generators of $\{z \mid z^n = 1\}$ = $\{\omega^k \mid \gcd(k, n) = 1\}$ where $\omega = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$

Permutation Groups

- S_X ≔ symmetric group (group of all permutations) of the set X; any subgroup of S_X is called a permutation group
- $A_n := \{ \sigma \in S_n \mid \sigma \text{ is an even permutation} \}$ = alternating group on *n* letters
- Size of alternating group: $2|A_n| = |S_n|$
- Transforming a cycle: $\sigma = (x_1 \quad \cdots \quad x_n) \implies \tau \sigma \tau^{-1} = (\tau (x_1) \quad \cdots \quad \tau (x_n))$
- $D_n :=$ dihedral group of size n = group of symmetries of a regular n-gon = $\{r^x s^y \mid x \in \{0, 1, \dots, n-1\}$ and $y \in \{0, 1\}\}$ where $r^n = id$ and $s^2 = id$ and $srs = r^{-1}$

 D_n is a subgroup of S_n

- $D_n = \left\langle r, s \mid r^n = id \text{ and } s^2 = id \text{ and } srs = r^{-1} \right\rangle$ (D_n is generated by r and s with those relations)
- **Rigid motions** preserve *orientation*; symmetries need not (a right hand must remain right in a rigid motion)

Cosets

- Definition: *H* is any subgroup of *G*. $\forall g \in G$: Left coset containing $g = \{gh \mid h \in H\} = gH$ Right coset containing $g = \{hg \mid h \in H\} = Hg$
- Equivalence:
- $Hg_1^{-1} = Hg_2^{-1} \Longleftrightarrow Hg_1^{-1} \subseteq Hg_2^{-1} \Leftrightarrow g_1^{-1} \in Hg_2^{-1} \Leftrightarrow g_1^{-1}g_2 \in Hg_2^{-1}$
- Index of a subgroup: H is any subgroup of G: [G:H] = Index of H in G := number of cosets of H in G
- Lagrange theorem: $[G:H] = \frac{|G|}{|H|}$ Corollary: |H| ||G|Corollary: All groups with prime order are cyclic Corollary: For finite groups $K \subseteq H \subseteq G$: [G:K] = [G:H] [H:K]
- Euler's totient function: $\varphi \colon \mathbb{N} \to \mathbb{N}$ $n \mapsto \begin{cases} 1 & \text{if } n = 1 \\ \text{num. of } m \text{ s.t. } 1 \leq m \leq n \text{ and } \gcd(m, n) = 1 & \text{otherwise} \\ \text{Note: } |U(n)| = \varphi(n) \end{cases}$
- Euler's theorem: $\forall a \in \mathbb{Z}, n \in \mathbb{N}$ where gcd(a, n) = 1: $a^{\varphi(n)} \equiv 1 \pmod{n}$
- Fermat's little theorem: $\forall p \in \text{primes}, a \in \mathbb{Z} \text{ where } p \nmid a : a^{p-1} \equiv 1 \pmod{p}$

Cryptography

- Cryptosystem = ($\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D}$) (plaintexts, ciphertexts, keyspace, encryption rules, decryption rules)
- Shift cipher: $e_k(x) \equiv x + k \pmod{n}$ $d_k(y) \equiv y - k \pmod{n}$
- Affine cipher: key = (a, b) where gcd(a, n) = 1 $e_k(x) \equiv ax + b \pmod{n}$ $d_k(y) \equiv a^{-1}(y - b) \pmod{n}$
- Generalized affine cipher: $key = (A, \mathbf{b})$ where A is an invertible matrix and \mathbf{b} is a vector $e_k(\mathbf{x}) \equiv \mathbf{x}A + \mathbf{b} \pmod{n}$ $d_k(\mathbf{y}) \equiv (\mathbf{y} - \mathbf{b})A^{-1} \pmod{n}$

• **RSA**:

Relies on difficulty of determining $\varphi(n)$ from n. n = pq (where p, q are primes) $\implies \varphi(n) = (p-1)(q-1)$ public key = (n, E)private key = (D) s.t. $DE \equiv 1 \pmod{\varphi(n)}$ $e_k(x) = x^E, d_k(y) = y^D$

Algebraic Coding Theory

• Definition:

- $A = \{a_1, a_2, \dots, a_q\} = \text{set of symbols} = \underline{\text{code alphabet}} \\ A \underline{\text{word of length } n \text{ over } A \text{ is a sequence } \mathbf{x} = x_1 x_2 \dots x_n \\ \text{where all } x_i \in A \\ A \underline{\text{block code of length } n \text{ over } A \text{ is a nonempty subset } C \text{ of } A^n \\ An \text{ element of } C \text{ is a } \underline{\text{codeword of } C} \\ \text{If } A = \mathbb{Z}_2 = \{0, 1\} \text{ then } C \text{ is a binary (block) code} \end{cases}$
- Triangle inequality: $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$
- If d(C) = m then: m 1 or fewer errors can be detected, and $\lfloor \frac{m-1}{2} \rfloor$ or fewer errors can be corrected

•
$$d(\mathbf{x}, \mathbf{y}) = w(\mathbf{x} - \mathbf{y})$$

- Linear code: The code alphabet is a finite field F, and code C (of length n) is a subspace of Fⁿ, i.e. C is nonempty and ∀x, y ∈ C, ∀a, b ∈ F : ax + by ∈ C
 If dim(C) = m then C is called a [n, m]-code over F
 Furthermore if d(C) = d then C is a [n, m, d]-code over F
- Minimum weight of a code: $w(C) \coloneqq \min_{x \in C \setminus \{0\}} \{w(\mathbf{x})\}$
- Generator matrix: $G = \begin{pmatrix} \mathbf{g}_1 \\ \vdots \\ \mathbf{g}_m \end{pmatrix} = \begin{pmatrix} g_{11} & \cdots & g_{1n} \\ \vdots & \vdots \\ g_{m1} & \cdots & g_{mn} \end{pmatrix} \in \mathbf{M}_{m \times n}$ where $\{\mathbf{g}_1, \dots, \mathbf{g}_m\}$ is a basis for C

Then $C = \{aG \mid a \in F^m\}$ (i.e. a lin. combin. of rows in G)

• Parity-check matrix: $H = \begin{pmatrix} \mathbf{n}_1 \\ \vdots \\ \mathbf{h}_{n-m} \end{pmatrix} \in \mathcal{M}_{(n-m) \times n}$

where $\{\mathbf{h}_1, \dots, \mathbf{h}_{n-m}\}$ is a basis for the nullspace of GThen $C = \{\mathbf{x} \in F^n \mid H\mathbf{x}^T = \mathbf{0}^T\}$

 $\exists \mathbf{c} \in C \text{ where } w(\mathbf{c}) \leq e \iff$

some e columns of H are linearly dependent

Single-error-correcting code: In particular, C can correct any single error $\iff H$ has no zero column and no two columns of H are scalar multiple of each other

• Syndrome: $s_H(\mathbf{x}) := (H\mathbf{x}^T)^T \in F^{n-m}$ If $s_H(\mathbf{x}) = 0$ then no error occurred; if $s_H(\mathbf{x}) = i^{\text{th}}$ column of H, then a single error occurred at i^{th} entry of word

• Syndrome decoding:

1. Partition F^n into cosets of C

2. Pick the coset leader (the word $\mathbf{x} \in F^n$ with minimum weight) for each coset

3. Compute the syndrome of each coset leader (i.e.

syndrome look-up table)

4. For each word $\mathbf{y} \in F^n$ received, use $s_H(\mathbf{y})$ to search the syndrome look-up table for the associated coset leader \mathbf{e} , then decode \mathbf{y} to $\mathbf{y} - \mathbf{e}$

Group Isomorphisms

• Definition:

- Bijective mapping where group operation is preserved
- All cyclic groups of infinite order are isomorphic to $\mathbb Z$
- All cyclic groups of order n are isomorphic to \mathbb{Z}_n
- **Cayley's theorem**: Every group is isomorphic to a permutation group

Direct Products

• External direct product: $G \times H \coloneqq$ external direct product of groups G and H Order of element in external direct product: ∀(g₁,...,g_n) ∈ ∏ⁿ_{s=1}G_s: o((g₁,...,g_n)) = lcm {o(g₁),...,o(g_n)}
Cyclic group and GCD: Z_m × Z_n ≅ Z_{mn} ⇐⇒ gcd(m,n) = 1
Internal direct product: If H, K are subgroups of G s.t.;

1. $G = HK := \{hk \mid h \in H \text{ and } k \in K\}$

2. $H \cap K = \{e\}$

3. $\forall h \in H, \ \forall k \in K : hk = kh$

Then G is the internal direct product of ${\cal H}$ and ${\cal K}$

• **Isomorphism**: Given groups G and H

Internal direct product \cong External direct product

• Internal direct product of n groups:

Given group G with subgroups H_1, \ldots, H_n s.t.: 1. $G = H_1 \cdots H_n := \{h_1 \cdots h_n \mid h_s \in H \text{ where } s \in \{1, \ldots, n\}\}$ 2. $H_s \cap (H_1 \cdots H_{s-1} H_{s+1} \cdots H_n) = \{e\}$ where $s \in \{1, \ldots, n\}$ 3. $\forall h_s \in H_s, \forall h_t \in H_t : h_s h_t = h_t h_s$

Then G is the internal direct product of H_1, \ldots, H_n

Normal Subgroups

• **Definition**: Subgroup H of G is called normal if $\forall g \in G : gH = Hg$

In particular: If G is abelian then all subgroups are normal

• Equivalence: N is a normal subgroup of G

Quotient Groups

• Definition: Given a normal subgroup N of G: $G/N := \{gN \mid g \in G\} = \{Ng \mid g \in G\}$ G/N is a group (of order [G : N]) with binary operation (aN) (bN) := abNG/N is called the quotient group of G modulo N

Homomorphisms

• **Definition**: Group operation is preserved

• Properties of group homomorphisms:

 $\phi \colon G \to H$ is a group homomorphism :

- $\phi(e_G)$ is the identity in H

 $-\forall g \in G : \phi(g^{-1}) = \phi(g)^{-1}$

- K is a subgroup of $G \implies \phi[K]$ is a subgroup of H

- *L* is a subgroup of $H \implies \phi^{-1}[L]$ is a subgroup of *G*

- L is a normal subgroup $\implies \phi^{-1}[L]$ is a normal subgroup

• Kernel: $\operatorname{ker}(\phi) := \{g \in G \mid \phi(g) = e_H\} = \phi^{-1}\left[\{e_H\}\right] \subseteq G$

- $\ker(\phi)$ is a normal subgroup of G- ϕ is injective $\iff \ker(\phi) = \{e_G\}$

 φ is injective \longleftrightarrow $\operatorname{ker}(\varphi) = [e_G]$

• Canonical/Natural homomorphism:

Given a normal subgroup N of G : $\label{eq:general} \phi \colon G \to G/N \\ g \mapsto gN$

is the canonical/natural homomorphism

Isomorphism Theorems

• First isomorphism theorem: $\phi: G \to H$ is a group homomorphism $: \phi[G] \cong G/\ker(\phi)$ • Second isomorphism theorem: Arrow=subgroup: G H is a (not necessarily normal) subgroup of G, and N is a normal subgroup of G : $HN := \{hn \mid h \in H \text{ and } n \in N\}$ is a subgroup of G $H \cap N$ is a normal subgroup of H $H/(H \cap N) \cong (HN)/N$ • Third isomorphism theorem: H, N are normal subgroups of G s.t. $N \subseteq H$: $H \cap N$ $G \cap H \cap N$ $H \cap N$

Rings

- **Definition**: Abelian group *R* with additional properties:
- Multiplication is associative: $\forall a, b, c \in R : (ab)c = a(bc)$ - Addition and multiplication satisfy distributive laws:
- $\forall a, b, c \in R$: a(b+c) = ab + ac and (b+c)a = ba + ca

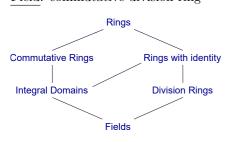
• Special rings:

Ring with identity: $\exists 1 \in R \text{ s.t. } \forall a \in R : a1 = a = 1a$ Commutative ring: multiplication is commutative Integral domain: commutative ring with identity s.t.

 $\forall a, b \in R$: $(ab = 0 \implies a = 0 \text{ or } b = 0)$

Division ring: ring with identity s.t. $\forall a \in R \setminus \{0\} : a \text{ is a unit}$

(i.e. $\exists a^{-1} \in R \text{ s.t. } aa^{-1} = 1 = a^{-1}a$) Field: commutative division ring



- Some rings: $\forall n \in \mathbb{N} : \mathbb{Z}_n$ is commutative ring with identity n is composite $\implies \mathbb{Z}_n$ is not an integral domain $M_{n \times n}(F)$ is a (non-commutative) ring with identity Q_8 is a (non-commutative) division ring $\mathbb{Z} \times 2\mathbb{Z}$ is a ring without identity that has a subring $\mathbb{Z} \times \{0\}$ with identity (1,0)
- Zero divisors: If $a \neq 0$ and $b \neq 0$ but ab = 0 then: a is a left zero divisor and b is a right zero divisor

An element that is both a left and right zero divisor is called a zero divisor

Subrings

- **Definition**: A subring S or a ring R is a subset of R s.t. it is a ring using the same addition and multiplication of R
- Subring test: Is subset S a subring of R? $S \neq \emptyset$ $\forall r, s \in S : r - s \in S$ \Leftrightarrow S is a subring of R $\forall r, s \in S : rs \in S$

Cancellation Law

• Let *D* is a commutative ring with identity

 $\forall a, b, c \in D \text{ with } a \neq 0$: D is an integral domain \iff $ab = ac \implies b = c$

• Finite integral domain: Every finite integral domain is a field

Characteristic of a Ring

• **Definition**: char(R) := smallest $n \in \mathbb{N}$ s.t. $\forall a \in R : na = 0$ where $na := a + a + \dots + a$ n times

If no such n exists, then $char(R) \coloneqq 0$

- **Rings with identity**: In any ring with identity *R* : $o(1) = n \neq \infty \implies \operatorname{char}(R) = n$ (additive order)
- Integral domain: In any integral domain R: char(R) is prime or zero

Ring Homomorphisms and Ideals

Ring Homomorphisms

• **Definition**: Addition and multiplication are preserved

- **Properties**: Given a ring homomorphism $\phi: R \to S$: - $\phi[R]$ is a subring of S
- R is commutative $\implies \phi[R]$ is commutative

 $-\phi(0_R) = 0_S$

- Suppose R and S have identities 1_R and 1_S resp. : ϕ is surjective $\implies \phi(1_R) = 1_S$

- Suppose R is a field : $\phi[R] \neq \{0\} \implies \phi[R]$ is a field

Ideals

- **Definition**: An ideal *I* of a ring *R* is a subring of *R* s.t. $\forall r \in R : rI \subseteq I \text{ and } Ir \subseteq I$
- Trivial ideals of R: {0} and R
- Proper ideals of R: All ideals that are not R itself
- Ideal test: Is subset I of R an ideal? $I \neq \emptyset$ $\forall a, b \in I : a - b \in I$ $\iff I$ is an ideal $\forall a \in I \text{ and } r \in R : ra, ar \in I$
- **Principal ideal**: Let R be a commutative ring with identity : Principal ideal of $a \in R \coloneqq aR$ (it is an ideal)
- Ideals of \mathbb{Z} : Every ideal of \mathbb{Z} is a principal ideal
- Kernels of ring homomorphisms: Given any ring homomorphism ϕ : ker(ϕ) is an ideal

Quotient Rings

• **Definition**: Given any ideal I of ring R: $R/I := \{r + I \mid r \in R\}$ is the quotient ring of R modulo I

R/I is a ring with these operations: $(r+I) + (s+I) \coloneqq (r+s) + I$ (r+I)(s+I) := rs + I

• Canonical/Natural homomorphism: Given an ideal I of R

 $\phi: R \to R/I$ $r \mapsto r + I$ is the canonical/natural homomorphism

Isomorphism Theorems

- First isomorphism theorem: $\phi: R \to S$ is a ring homomorphism $: \phi[R] \cong R/\ker(\phi)$
- Second isomorphism theorem: Arrow=subring: R S is a subring of R, and I is an ideal of R $-S + I \coloneqq \{s + a \mid s \in S \text{ and } a \in I\}$ is a subring of R_{s+1}
- $S \cap I$ is an ideal of S $-S/(S \cap I) \cong (S+I)/I$
- Third isomorphism theorem: I. J are ideals of R s.t. $J \subseteq I$: - I/J is an ideal of R/J- $R/I \cong (R/J)/(I/J)$

Maximal and Prime Ideals

• Maximal ideal: A proper ideal M of a ring R is a maximal ideal if M is not a proper subset of any ideal of Rexcept R itself

i.e. I is an ideal of R s.t. $M \subseteq I \implies I = M$ or I = R

All rings with identity have at least one maximal ideal

- Field from maximal ideal: Let *R* be a commutative ring with identity and M an ideal of RM is a maximal ideal $\iff R/M$ is a field
- **Prime ideal**: A proper ideal *P* of a ring *R* is a prime ideal if $\forall a, b, \in R$: $ab \in P \implies a \in P$ or $b \in P$
- Integral domain from prime ideal: Let R be a commutative ring with identity and P and ideal of R: P is a prime ideal $\iff R/P$ is an integral domain
- Maximal \rightarrow Prime: Every maximal ideal in a commutative ring with identity is also a prime ideal

• Prime ideal that is not maximal:

Given an integral domain R that is not a field, $R[x]/xR[x] \cong R$ is an integral domain that is not a field, so xR[x] is a prime ideal but not a maximal ideal

Chinese Remainder Theorem

• **Definition**: $\forall n_1, n_2, \ldots, n_k \in \mathbb{N}$ with no common factors (i.e. $\forall s \neq t$: $gcd(n_s, n_t) = 1$) : Let $n = n_1 n_2 \dots n_k$. Then: $\phi\colon \mathbb{Z}_n\to\mathbb{Z}_{n_1}\times\mathbb{Z}_{n_2}\times\cdots\times\mathbb{Z}_{n_k}$ $x \mapsto (x \pmod{n_1}, x \pmod{n_2}, \dots, x \pmod{n_k})$ is an isomorphism $\therefore \mathbb{Z}_n \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$

Polvnomials

 \overline{R} is a commutative ring with identity, F is a field

- Monic: leading coefficient is 1
- Degree of zero polynomial is $-\infty$
- R is a commutative ring with identity $\implies R[x]$ is a commutative ring with identity
- R is an integral domain $\implies R[x]$ is an integral domain
- Evaluation mapping: $\phi_{\alpha} \colon R[x] \to R$ α)

$$p(x) \mapsto p(a)$$

The evaluation mapping is a ring homomorphism

- Division algorithm: $\forall f(x), g(x) \in F[x]$ $\exists !q(x), r(x) \in F[x] \text{ s.t.}$ f(x) = q(x)g(x) + r(x) and $\deg(r(x)) < \deg(g(x))$
- Number of roots: $\forall 0 \neq p(x) \in F[x]$ $deg(p(x)) = n \implies p(x)$ has at most n roots in F
- GCD: Monic polynomial of highest degree that is a divisor of both polynomials; use the Euclidean algorithm to find
- GCD is linear combination: $\forall f(x), g(x) \in F$: $d(x) = \gcd(f(x), g(x)) \implies$ $\exists a(x), b(x) \in \mathbb{Z}$ s.t. a(x)f(x) + b(x)g(x) = d(x)
- **Reducibility**: $f(x) \in F[x]$ is reducible over F if f(x) = g(x)h(x) for some $g(x), h(x) \in F[x]$ where $0 < \deg(g(x)) < \deg(f(x))$ and $0 < \deg(h(x)) < \deg(f(x))$
- **Principal ideals**: Every ideal of F[x] is principal
- Maximal ideals: $\forall p(x) \in F[x]$ (not necessarily monic) p(x)F(x) is maximal ideal $\iff p(x)$ is irreducible over F
- Modulo arithmetic:

 $F[x; p(x)] \coloneqq \{f(x) \in F(x) \mid \deg(f(x)) < \deg(p(x))\}$ (with usual addition, and multiplication modulo p(x) is a commutative ring with identity

Furthermore, $F[x; p(x)] \cong F[x]/p(x)F[x]$

• Algebraic extension of fields: The polynomial $x^2 - 2$ is irreducible over \mathbb{Q} . As $\sqrt{2}$ is a root of $x^2 - 2$, $\mathbb{Q}(\sqrt{2}) \coloneqq \left\{ a\sqrt{2} + b \mid a, b \in \mathbb{Q} \right\} \text{ is an extension field of } \mathbb{Q}.$

Finite Fields

- \mathbb{Z}_p is a finite field $\iff p$ is prime $\implies \mathbb{Z}_p^{\star}$ is cyclic
- Characteristic of a finite field is prime
- Order (num. of elements) of a finite field is a prime power
- Polynomial $x^q x$: Let F be a finite field of order q: $(\forall \beta \in F : \beta^q = \beta)$ and $\prod_{\beta \in F} (x - \beta) \equiv x^q - x$
- Existence and uniqueness:

 $\forall p \in \text{primes and } k \in \mathbb{N}$: there exists a unique (i.e. isomorphic) finite field of order p^k , denoted as GF(q) or \mathbb{F}_q

• Constructing a finite field of order p^k : If k = 1, just take $\mathbb{F}_n = \mathbb{Z}_n$ Else: 1. Find a monic irreducible polynomial $f(x) \in \mathbb{F}_p[x]$ of degree k, i.e. $f(x) = x^{k} + r_{k-1}x^{k-1} + \dots + r_{1}x + r_{0}$ where $r_0, r_1, \ldots, r_{k-1} \in \mathbb{F}_p$ 2. Let β be a new element such that $f(\beta) = 0$, i.e. $\beta^k = -\left(r_{k-1}\beta^{k-1} + \dots + r_1\beta + r_0\right)$ 3. Then $\mathbb{F}_{p^k} = \mathbb{F}_p(\beta) \coloneqq$ $\{s_{k-1}\beta^{k-1} + \dots + s_1\beta + r_0 \mid s_0, s_1, \dots, s_{k-1} \in F_p\}$ is a field of order p^k • **Primitive element**: Given a finite field F : the (multiplicative) group $F^* := F \setminus \{0\}$ is cyclic A generator of F^{\star} is called a primitive element of F • F has order q and α is a primitive element of F : $\prod_{s=0}^{q-2} (x - \alpha^{s}) \equiv x^{q-1} - 1$ • **Primitive polynomial**: Given a finite field F_0 : $f(x) \in F_0[x]$ is a primitive polynomial over F if: 1. f(x) is irreducible over F_0 , and 2. α is a zero of $f(x) \implies \alpha$ is a primitive element of $F_0(\alpha)$ Cyclic codes • **Definition**: $C \in F^n$ is a cyclic code if: 1. C is a linear code, and 2. $\mathbf{c} = c_0 c_1 c_2 \dots c_{n-1}$ is a codeword \Longrightarrow cyclic shift $s(\mathbf{c}) \coloneqq c_{n-1}c_0c_1 \ldots c_{n-2}$ is also a codeword • Polynomial representation: A word $\mathbf{a} = a_0 a_1 \dots d_{n-1} \in F^n$ is represented by $a(x) \coloneqq a_0 + a_1 x + \dots + a_{n-1} x^{x-1} \in F[x; x^n - 1]$ This mapping is a vector space isomorphism • Cyclic code \leftrightarrow ideal: $C \subseteq F^n$ is a cyclic code \iff $C' \coloneqq \{c(x) \mid \mathbf{c} \in C\}$ is an ideal of $F[x; x^n - 1]$ • Generator polynomial: Let $C \subseteq F^n$ and $C' \coloneqq \{c(x) \mid \mathbf{c} \in C\} \subseteq F[x; x^n - 1]$ C is a cyclic [n, k]-code $\iff \exists$ monic $q(x) \in F[x]$ s.t. $g(x) \mid x^{n} - 1$ $\deg(q(x)) = n - k$ $C' = \{f(x)g(x) \mid f(x) \in F[x] \text{ and } \deg(f(x)) \le k-1\}$ • Given a cyclic code C, the monic polynomial in C' with least degree is the generator polynomial • Constructing cyclic code from generator polynomial: To construct a cyclic [n, k]-code C: 1. find a polynomial of degree n-k that divides x^n-1

2. Use it as the generator polynomial

• Constructing generator and parity check matrices: Given a generator poly. $g(x) = a_0 + a_1 x + \dots + a_{n-k} x^{n-k}$ with $\deg(q(x)) = n - k$:

$$G = \begin{pmatrix} g(x) \\ xg(x) \\ x^{k-1}g(x) \end{pmatrix} = \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-k} & 0 & \cdots & 0 & 0 \\ 0 & a_0 & a_1 & \cdots & \cdots & a_{n-k} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & a_0 & a_1 & \cdots & \cdots & a_{n-k} \end{pmatrix}$$
$$H = \begin{pmatrix} h_k & h_{k-1} & \cdots & \cdots & h_0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x^{n-k-1}h_R(x) \end{pmatrix} = \begin{pmatrix} h_k & h_{k-1} & \cdots & \cdots & h_0 & 0 & \cdots & 0 \\ 0 & h_k & h_{k-1} & \cdots & \cdots & h_0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & h_k & h_{k-1} & \cdots & \cdots & h_0 \end{pmatrix}$$

where $h(x) := \frac{(x-1)}{q(x)} = h_0 + h_1 x + \dots + h_k x^k$ is the parity check polynomial, and $h_B(x)$ is coef.-reversed monic of h(x)

Reed-Solomon Codes

• **Definition**: Given a finite field F of order q, and α a primitive element of F:

 $g(x) \coloneqq (x - \alpha^{a+1}) (x - \alpha^{a+2}) \cdots (x - \alpha^{a+\delta-1})$ (where $2 < \delta < q-1$) is a generator polynomial (of degree $\delta - 1$) for a cyclic $[q-1, q-\delta]$ -code over F

It is a Reed-Solomon code, denoted by RS $(q-1, q-\delta)$

• Minimum distance:

C is a Reed-Solomon code $RS(q-1, q-\delta)$: $d(C) = \delta$