
MA3218 Applied Algebra
Basic Number Theory
� Division algorithm:
∀a ∈ R, b ∈ N : ∃!q, r ∈ Z s.t. a = bq + r and 0 ≤ r < b

� GCD is divisible by other divisors: d = gcd(a, b) ⇐⇒
d | a and d | b and (∀c : c | a and c | b =⇒ c | d)

� GCD is linear combination:
∀a, b ∈ Z∗ : d = gcd(a, b) =⇒ ∃x, y ∈ Z s.t. ax+ by = d
In particular: 1 = gcd(a, b) ⇐⇒ ∃x, y ∈ Z s.t. ax+ by = 1

� Coprime properties: ∀a, b, c ∈ Z :
gcd(a, c) = 1 and gcd(b, c) = 1 =⇒ gcd(ab, c) = 1
a | bc and gcd(a, b) = 1 =⇒ a | c
gcd(a, b) = 1 and a | c and b | c =⇒ ab | c

� Multiplicative invertibility:
k ∈ Zn and gcd(k, n) = 1 =⇒ ∃x ∈ Zn s.t. kx ≡ 1 (mod n)

Finding x s.t. 19x ≡ 1 (mod 391):−−−−−−−−−→

391 = 19× 20 + 11 (7) 391 + (−144) 19 = 1

−−
−−
−−
−−
−→19 = 11× 1 + 8 (−4) 19 + (7) 11 = 1

11 = 8× 1 + 3 (3) 11 + (−4) 8 = 1

8 = 3× 2 + 2 (−1 )8 + (3) 3 = 1

3 = 2× 1 + 1 −−−−−→ (1) 3 + (−1) 2 = 1
∴ 19× (−144) ≡ 1 (mod 391)
∴ x ≡ −144 ≡ 247 (mod 391)

Groups
� Definition: Set G with binary op. satisfying:

0. Closure: Binary operation is well-defined over G
1. Associativity: ∀a, b, c ∈ G : (ab)c = a(bc)
2. Identity: ∃e ∈ G s.t. ∀a ∈ G, ea = ae = a
3. Invertibility: ∀a ∈ G : ∃b ∈ G s.t. ab = ba = e

� Abelian group: Binary op. satisfies commutativity:
∀a, b ∈ G : ab = ba

� Some groups:
Q∗ := multiplicative group of nonzero rationals
U(n) := {m ∈ Zn | gcd(m,n) = 1} = group of units in Zn
Q8 := {±1,±I,±J,±K} = quaternion group (non-abelian)

where 1 = ( 1 0
0 1 ), I =

(
0 1
−1 0

)
, J = ( 0 i

i 0 ), K =
(
i 0
0 −i

)
GLn(F ) := {A ∈ Mn×n(F ) | det(A) 6= 0} (non-abelian)
SLn(F ) := {A ∈ Mn×n(F ) | det(A) = 1}

SLn(F ) is a subgroup of GLn(F )
T := {z ∈ C | |z| = 1} = circle group

� Product of finite order matrices can have inf. order:
A =

(
0 1
−1 0

)
=⇒ A4 = I

B =
(
0 −1
1 −1

)
=⇒ B3 = I

∀n ∈ N : (AB)
n

=
(
1 −n
0 1

)
6= I

Subgroups
� Basic subgroup test: Is subset H a subgroup of G?

eG ∈ H
Binary op. closed in H
∀h ∈ H : h−1 ∈ H

 ⇐⇒ H is a subgroup of G

� Better subgroup test: Is subset H a subgroup of G?
H 6= ∅
∀g, h ∈ H : gh−1 ∈ H

}
⇐⇒ H is a subgroup of G

Cyclic Groups
� Definition: G is cyclic ⇐⇒ ∃g ∈ G s.t. 〈g〉 = G

� Cyclic subgroup generated by a : ∀a ∈ G :
〈a〉 :=

{
ak | k ∈ Z

}
= cyclic subgroup generated by a

� Every cyclic group is abelian

� Every subgroup of a cyclic group is cyclic

� Order of elements: If G = 〈a〉 and n = |G| 6=∞ then:
∀0 ≤ k ∈ Z : o

(
ak
)

= n
gcd(k,n)

� nth roots of unity = {z | zn = 1}
=
{

cos
(
2kπ
n

)
+ i sin

(
2kπ
n

)
| k ∈ {0, 1, 2, . . . , n− 1}

}
primitive nth roots of unity = generators of {z | zn = 1}

=
{
ωk | gcd(k, n) = 1

}
where ω = cos

(
2π
n

)
+ i sin

(
2π
n

)
Permutation Groups
� SX := symmetric group (group of all permutations) of the

set X; any subgroup of SX is called a permutation group

� An := {σ ∈ Sn | σ is an even permutation}
= alternating group on n letters

� Size of alternating group: 2 |An| = |Sn|

� Transforming a cycle:
σ =

(
x1 · · · xn

)
=⇒ τστ−1 =

(
τ (x1) · · · τ (xn)

)
� Dn := dihedral group of size n = group of symmetries of a

regular n-gon = {rxsy | x ∈ {0, 1, . . . , n− 1} and y ∈ {0, 1}}
where rn = id and s2 = id and srs = r−1

Dn is a subgroup of Sn

Dn =
〈
r, s | rn = id and s2 = id and srs = r−1

〉
(Dn is generated by r and s with those relations)

� Rigid motions preserve orientation; symmetries need not
(a right hand must remain right in a rigid motion)

Cosets
� Definition: H is any subgroup of G. ∀g ∈ G :

Left coset containing g = {gh | h ∈ H} = gH
Right coset containing g = {hg | h ∈ H} = Hg

� Equivalence:
g1H = g2H ⇐⇒ g1H ⊆ g2H ⇐⇒ g1 ∈ g2H ⇐⇒ g−12 g1 ∈ H

m
Hg−11 = Hg−12 ⇐⇒ Hg−11 ⊆ Hg−12 ⇐⇒ g−11 ∈ Hg−12 ⇐⇒ g−11 g2 ∈ H

� Index of a subgroup: H is any subgroup of G :
[G : H] = Index of H in G := number of cosets of H in G

� Lagrange theorem: [G : H] = |G|
|H| Corollary: |H|

∣∣∣ |G|
Corollary: All groups with prime order are cyclic
Corollary: For finite groups K ⊆ H ⊆ G :

[G : K] = [G : H] [H : K]

� Euler’s totient function: ϕ : N→ N

n 7→

{
1 if n = 1

num. of m s.t. 1 ≤ m ≤ n and gcd(m,n) = 1 otherwise

Note: |U(n)| = ϕ(n)

� Euler’s theorem: ∀a ∈ Z, n ∈ N where gcd(a, n) = 1 :
aϕ(n) ≡ 1 (mod n)

� Fermat’s little theorem: ∀p ∈ primes, a ∈ Z where p - a :
ap−1 ≡ 1 (mod p)

Cryptography
� Cryptosystem = (P, C,K, E ,D)

(plaintexts, ciphertexts, keyspace, encryption rules, decryption rules)

� Shift cipher: ek(x) ≡ x+ k (mod n)

dk(y) ≡ y − k (mod n)

� Affine cipher: key = (a, b) where gcd(a, n) = 1

ek(x) ≡ ax+ b (mod n)

dk(y) ≡ a−1(y − b) (mod n)

� Generalized affine cipher: key = (A,b) where
A is an invertible matrix and b is a vector

ek(x) ≡ xA+ b (mod n)

dk(y) ≡ (y − b)A−1 (mod n)

� RSA:
Relies on difficulty of determining ϕ(n) from n.
n = pq (where p, q are primes) =⇒ ϕ(n) = (p− 1)(q − 1)
public key = (n,E)
private key = (D)

}
s.t. DE ≡ 1 (mod ϕ(n))

ek(x) = xE , dk(y) = yD

Algebraic Coding Theory
� Definition:
A = {a1, a2, . . . , aq} = set of symbols = code alphabet
A word of length n over A is a sequence x = x1x2 . . . xn
where all xi ∈ A
A block code of length n over A is a nonempty subset C of An

An element of C is a codeword of C
If A = Z2 = {0, 1} then C is a binary (block) code

� Triangle inequality: d(x,y) ≤ d(x, z) + d(z,y)

� If d(C) = m then: m− 1 or fewer errors can be detected,
and

⌊
m−1
2

⌋
or fewer errors can be corrected

� d(x,y) = w(x− y)

� Linear code: The code alphabet is a finite field F ,
and code C (of length n) is a subspace of Fn,
i.e. C is nonempty and ∀x,y ∈ C, ∀a, b ∈ F : ax + by ∈ C
- If dim(C) = m then C is called a [n, m]-code over F
- Furthermore if d(C) = d then C is a [n, m, d]-code over F

� Minimum weight of a code: w(C) := minx∈C\{0} {w(x)}

� Generator matrix: G =

(
g1

...
gm

)
=

(
g11 ··· g1n
...

...
gm1 ··· gmn

)
∈ Mm×n

where {g1, . . . ,gm} is a basis for C

Then C = {aG | a ∈ Fm} (i.e. a lin. combin. of rows in G)

� Parity-check matrix: H =

(
h1

...
hn−m

)
∈ M(n−m)×n

where {h1, . . . ,hn−m} is a basis for the nullspace of G

Then C =
{
x ∈ Fn | HxT = 0T

}
∃c ∈ C where w(c) ≤ e ⇐⇒

some e columns of H are linearly dependent

Single-error-correcting code: In particular, C can correct
any single error ⇐⇒ H has no zero column and no two
columns of H are scalar multiple of each other

� Syndrome: sH(x) :=
(
HxT

)T ∈ Fn−m
If sH(x) = 0 then no error occurred; if sH(x) = i th column
of H, then a single error occured at i th entry of word

� Syndrome decoding:
1. Partition Fn into cosets of C
2. Pick the coset leader (the word x ∈ Fn with minimum
weight) for each coset
3. Compute the syndrome of each coset leader (i.e.
syndrome look-up table)
4. For each word y ∈ Fn received, use sH(y) to search the
syndrome look-up table for the associated coset leader e,
then decode y to y − e

Group Isomorphisms
� Definition:

Bijective mapping where group operation is preserved

� All cyclic groups of infinite order are isomorphic to Z
� All cyclic groups of order n are isomorphic to Zn
� Cayley’s theorem: Every group is isomorphic to a

permutation group

Direct Products
� External direct product:
G×H := external direct product of groups G and H

� Order of element in external direct product:
∀ (g1, . . . , gn) ∈

∏n
s=1Gs :

o ((g1, . . . , gn)) = lcm {o (g1) , . . . , o (gn)}
� Cyclic group and GCD:
Zm × Zn ∼= Zmn ⇐⇒ gcd(m,n) = 1

� Internal direct product:
If H, K are subgroups of G s.t.:
1. G = HK := {hk | h ∈ H and k ∈ K}
2. H ∩K = {e}
3. ∀h ∈ H, ∀k ∈ K : hk = kh
Then G is the internal direct product of H and K

� Isomorphism: Given groups G and H :
Internal direct product ∼= External direct product

� Internal direct product of n groups:
Given group G with subgroups H1, . . . ,Hn s.t.:
1. G = H1 · · ·Hn := {h1 · · ·hn | hs ∈ H where s ∈ {1, . . . , n}}
2. Hs ∩ (H1 · · ·Hs−1Hs+1 · · ·Hn) = {e} where s ∈ {1, . . . , n}
3. ∀hs ∈ Hs, ∀ht ∈ Ht : hsht = hths
Then G is the internal direct product of H1, . . . ,Hn

Normal Subgroups
� Definition: Subgroup H of G is called normal if

∀g ∈ G : gH = Hg
In particular: If G is abelian then all subgroups are normal

� Equivalence: N is a normal subgroup of G
⇐⇒ ∀g ∈ G : gNg−1 ⊆ N
⇐⇒ ∀g ∈ G : gNg−1 = N

Quotient Groups
� Definition: Given a normal subgroup N of G :
G/N := {gN | g ∈ G} = {Ng | g ∈ G}
G/N is a group (of order [G : N ]) with binary operation
(aN) (bN) := abN

G/N is called the quotient group of G modulo N

Homomorphisms
� Definition: Group operation is preserved

� Properties of group homomorphisms:
φ : G→ H is a group homomorphism :
- φ (eG) is the identity in H

- ∀g ∈ G : φ
(
g−1

)
= φ (g)

−1

- K is a subgroup of G =⇒ φ[K] is a subgroup of H
- L is a subgroup of H =⇒ φ−1[L] is a subgroup of G
- L is a normal subgroup =⇒ φ−1[L] is a normal subgroup

� Kernel: ker(φ) := {g ∈ G | φ(g) = eH} = φ−1 [{eH}] ⊆ G
- ker(φ) is a normal subgroup of G
- φ is injective ⇐⇒ ker(φ) = {eG}

� Canonical/Natural homomorphism:
Given a normal subgroup N of G :

φ : G→ G/N

g 7→ gN
is the canonical/natural homomorphism

Isomorphism Theorems
� First isomorphism theorem:
φ : G→ H is a group homomorphism : φ[G] ∼= G/ ker(φ)

� Second isomorphism theorem: Arrow=subgroup:

H is a (not necessarily normal) subgroup of G,
and N is a normal subgroup of G :
- HN := {hn | h ∈ H and n ∈ N} is a subgroup of G
- H ∩N is a normal subgroup of H
- H/ (H ∩N) ∼= (HN) /N

� Third isomorphism theorem:
H, N are normal subgroups of G s.t. N ⊆ H :
- H/N is a normal subgroup of G/N
- G/H ∼= (G/N) / (H/N)



Rings
� Definition: Abelian group R with additional properties:

- Multiplication is associative: ∀a, b, c ∈ R : (ab)c = a(bc)
- Addition and multiplication satisfy distributive laws:
∀a, b, c ∈ R : a(b+ c) = ab+ ac and (b+ c)a = ba+ ca

� Special rings:
Ring with identity: ∃1 ∈ R s.t. ∀a ∈ R : a1 = a = 1a
Commutative ring: multiplication is commutative
Integral domain: commutative ring with identity s.t.

∀a, b ∈ R : (ab = 0 =⇒ a = 0 or b = 0)
Division ring: ring with identity s.t.
∀a ∈ R \ {0} : a is a unit

(i.e. ∃a−1 ∈ R s.t. aa−1 = 1 = a−1a)
Field: commutative division ringSpecial rings

Rings

Commutative Rings Rings with identity

Division RingsIntegral Domains gg

FieldsFields

� Some rings: ∀n ∈ N : Zn is commutative ring with identity
n is composite =⇒ Zn is not an integral domain

Mn×n(F ) is a (non-commutative) ring with identity
Q8 is a (non-commutative) division ring
Z× 2Z is a ring without identity that has

a subring Z× {0} with identity (1, 0)

� Zero divisors: If a 6= 0 and b 6= 0 but ab = 0 then:
a is a left zero divisor and b is a right zero divisor

An element that is both a left and right zero divisor
is called a zero divisor

Subrings
� Definition: A subring S or a ring R is a subset of R s.t. it

is a ring using the same addition and multiplication of R

� Subring test: Is subset S a subring of R?
S 6= ∅
∀r, s ∈ S : r − s ∈ S
∀r, s ∈ S : rs ∈ S

 ⇐⇒ S is a subring of R

Cancellation Law
� Let D is a commutative ring with identity :

D is an integral domain ⇐⇒ ∀a, b, c ∈ D with a 6= 0 :
ab = ac =⇒ b = c

� Finite integral domain:
Every finite integral domain is a field

Characteristic of a Ring
� Definition: char(R) := smallest n ∈ N s.t. ∀a ∈ R : na = 0

where na := a+ a+ · · ·+ a︸ ︷︷ ︸
n times

If no such n exists, then char(R) := 0

� Rings with identity: In any ring with identity R :
o(1)

(additive order)

= n 6=∞ =⇒ char(R) = n

� Integral domain: In any integral domain R :
char(R) is prime or zero

Ring Homomorphisms and Ideals
Ring Homomorphisms
� Definition: Addition and multiplication are preserved

� Properties: Given a ring homomorphism φ : R→ S :
- φ[R] is a subring of S
- R is commutative =⇒ φ[R] is commutative
- φ (0R) = 0S
- Suppose R and S have identities 1R and 1S resp. :

φ is surjective =⇒ φ (1R) = 1S
- Suppose R is a field : φ[R] 6= {0} =⇒ φ[R] is a field

Ideals
� Definition: An ideal I of a ring R is a subring of R s.t.

∀r ∈ R : rI ⊆ I and Ir ⊆ I
� Trivial ideals of R: {0} and R

� Proper ideals of R: All ideals that are not R itself

� Ideal test: Is subset I of R an ideal?
I 6= ∅
∀a, b ∈ I : a− b ∈ I
∀a ∈ I and r ∈ R : ra, ar ∈ I

 ⇐⇒ I is an ideal

� Principal ideal: Let R be a commutative ring with
identity : Principal ideal of a ∈ R := aR (it is an ideal)

� Ideals of Z: Every ideal of Z is a principal ideal

� Kernels of ring homomorphisms:
Given any ring homomorphism φ : ker(φ) is an ideal

Quotient Rings
� Definition: Given any ideal I of ring R :
R/I := {r + I | r ∈ R} is the quotient ring of R modulo I

R/I is a ring with these operations:
(r + I) + (s+ I) := (r + s) + I
(r + I) (s+ I) := rs+ I

� Canonical/Natural homomorphism:
Given an ideal I of R :

φ : R→ R/I

r 7→ r + I
is the canonical/natural homomorphism

Isomorphism Theorems
� First isomorphism theorem:
φ : R→ S is a ring homomorphism : φ[R] ∼= R/ ker(φ)

� Second isomorphism theorem: Arrow=subring:

S is a subring of R, and I is an ideal of R :
- S + I := {s+ a | s ∈ S and a ∈ I} is a subring of R
- S ∩ I is an ideal of S
- S/ (S ∩ I) ∼= (S + I) /I

� Third isomorphism theorem:
I, J are ideals of R s.t. J ⊆ I :
- I/J is an ideal of R/J
- R/I ∼= (R/J) / (I/J)

Maximal and Prime Ideals
� Maximal ideal: A proper ideal M of a ring R is a

maximal ideal if M is not a proper subset of any ideal of R
except R itself

i.e. I is an ideal of R s.t. M ⊆ I =⇒ I = M or I = R

All rings with identity have at least one maximal ideal

� Field from maximal ideal: Let R be a commutative ring
with identity and M an ideal of R :

M is a maximal ideal ⇐⇒ R/M is a field

� Prime ideal: A proper ideal P of a ring R is a prime ideal
if ∀a, b,∈ R : ab ∈ P =⇒ a ∈ P or b ∈ P

� Integral domain from prime ideal: Let R be a
commutative ring with identity and P and ideal of R :

P is a prime ideal ⇐⇒ R/P is an integral domain

� Maximal → Prime: Every maximal ideal in a
commutative ring with identity is also a prime ideal

� Prime ideal that is not maximal:
Given an integral domain R that is not a field,
R[x]/xR[x] ∼= R is an integral domain that is not a field,
so xR[x] is a prime ideal but not a maximal ideal

Chinese Remainder Theorem
� Definition: ∀n1, n2, . . . , nk ∈ N with no common factors

(i.e. ∀s 6= t : gcd(ns, nt) = 1) :
Let n = n1n2 . . . nk. Then:

φ : Zn → Zn1 × Zn2 × · · · × Znk

x 7→ (x (mod n1), x (mod n2), . . . , x (mod nk))
is an isomorphism

∴ Zn ∼= Zn1
× Zn2

× · · · × Znk

Polynomials
R is a commutative ring with identity, F is a field

� Monic: leading coefficient is 1

� Degree of zero polynomial is −∞
� R is a commutative ring with identity =⇒ R[x] is a

commutative ring with identity

� R is an integral domain =⇒ R[x] is an integral domain

� Evaluation mapping:φα : R[x]→ R

p(x) 7→ p(α)

The evaluation mapping is a ring homomorphism

� Division algorithm: ∀f(x), g(x) ∈ F [x] :
∃!q(x), r(x) ∈ F [x] s.t.
f(x) = q(x)g(x) + r(x) and deg(r(x)) < deg(g(x))

� Number of roots: ∀0 6= p(x) ∈ F [x]
deg(p(x)) = n =⇒ p(x) has at most n roots in F

� GCD: Monic polynomial of highest degree that is a divisor
of both polynomials; use the Euclidean algorithm to find

� GCD is linear combination: ∀f(x), g(x) ∈ F :
d(x) = gcd(f(x), g(x)) =⇒
∃a(x), b(x) ∈ Z s.t. a(x)f(x) + b(x)g(x) = d(x)

� Reducibility: f(x) ∈ F [x] is reducible over F if
f(x) = g(x)h(x) for some g(x), h(x) ∈ F [x] where
0 < deg(g(x)) < deg(f(x)) and 0 < deg(h(x)) < deg(f(x))

� Principal ideals: Every ideal of F [x] is principal

� Maximal ideals: ∀p(x) ∈ F [x] (not necessarily monic) :
p(x)F (x) is maximal ideal ⇐⇒ p(x) is irreducible over F

� Modulo arithmetic:
F [x; p(x)] := {f(x) ∈ F (x) | deg(f(x)) < deg(p(x))} (with
usual addition, and multiplication modulo p(x)) is a
commutative ring with identity

Furthermore, F [x; p(x)] ∼= F [x]/p(x)F [x]

� Algebraic extension of fields:
The polynomial x2 − 2 is irreducible over Q.
As
√

2 is a root of x2 − 2,
Q(
√

2) :=
{
a
√

2 + b | a, b ∈ Q
}

is an extension field of Q.

Finite Fields
� Zp is a finite field ⇐⇒ p is prime =⇒ Z?p is cyclic

� Characteristic of a finite field is prime

� Order (num. of elements) of a finite field is a prime power

� Polynomial xq = x : Let F be a finite field of order q :
(∀β ∈ F : βq = β) and

∏
β∈F (x− β) ≡ xq − x

� Existence and uniqueness:
∀p ∈ primes and k ∈ N : there exists a unique (i.e.
isomorphic) finite field of order pk, denoted as GF (q) or Fq

� Constructing a finite field of order pk:
If k = 1, just take Fp = Zp
Else:
1. Find a monic irreducible polynomial f(x) ∈ Fp[x] of
degree k, i.e. f(x) = xk + rk−1x

k−1 + · · ·+ r1x+ r0 where
r0, r1, . . . , rk−1 ∈ Fp
2. Let β be a new element such that f(β) = 0, i.e.
βk = −

(
rk−1β

k−1 + · · ·+ r1β + r0
)

3. Then Fpk = Fp(β) :={
sk−1β

k−1 + · · ·+ s1β + r0 | s0, s1, . . . , sk−1 ∈ Fp
}

is a field
of order pk

� Primitive element: Given a finite field F :
the (multiplicative) group F ? := F \ {0} is cyclic

A generator of F ? is called a primitive element of F

� F has order q and α is a primitive element of F :∏q−2
s=0 (x− αs) ≡ xq−1 − 1

� Primitive polynomial: Given a finite field F0 :
f(x) ∈ F0[x] is a primitive polynomial over F if:
1. f(x) is irreducible over F0, and
2. α is a zero of f(x) =⇒ α is a primitive element of F0(α)

Cyclic codes
� Definition: C ∈ Fn is a cyclic code if:

1. C is a linear code, and
2. c = c0c1c2 . . . cn−1 is a codeword =⇒

cyclic shift s(c) := cn−1c0c1 . . . cn−2 is also a codeword

� Polynomial representation:
A word a = a0a1 . . . dn−1 ∈ Fn is represented by
a(x) := a0 + a1x+ · · ·+ an−1x

x−1 ∈ F [x;xn − 1]

This mapping is a vector space isomorphism

� Cyclic code ↔ ideal: C ⊆ Fn is a cyclic code ⇐⇒
C ′ := {c(x) | c ∈ C} is an ideal of F [x;xn − 1]

� Generator polynomial: Let C ⊆ Fn and
C ′ := {c(x) | c ∈ C} ⊆ F [x;xn − 1] :

C is a cyclic [n, k ]-code ⇐⇒ ∃ monic g(x) ∈ F [x] s.t. g(x) | xn − 1
deg(g(x)) = n− k
C ′ = {f(x)g(x) | f(x) ∈ F [x] and deg(f(x)) ≤ k − 1}

� Given a cyclic code C, the monic polynomial in C ′ with
least degree is the generator polynomial

� Constructing cyclic code from generator polynomial:
To construct a cyclic [n, k ]-code C:
1. find a polynomial of degree n− k that divides xn − 1
2. Use it as the generator polynomial

� Constructing generator and parity check matrices:
Given a generator poly. g(x) = a0 + a1x+ · · ·+ an−kx

n−k

with deg(g(x)) = n− k :

G =

(
g(x)
xg(x)
·

xk−1g(x)

)
=

(
a0 a1 ··· ··· an−k 0 ··· 0 0
0 a0 a1 ··· ··· an−k 0 ··· 0
· · · · · · · · ·
0 ··· ··· 0 a0 a1 ··· ··· an−k

)

H =

(
hR(x)
xhR(x)
·

xn−k−1hR(x)

)
=

(
hk hk−1 ··· ··· h0 0 ··· 0 0
0 hk hk−1 ··· ··· h0 0 ··· 0
· · · · · · · · ·
0 ··· ··· 0 hk hk−1 ··· ··· h0

)
where h(x) := (xn−1)

g(x) = h0 + h1x+ · · ·+ hkx
k is the parity

check polynomial, and hR(x) is coef.-reversed monic of h(x)

Reed-Solomon Codes
� Definition: Given a finite field F of order q, and α a

primitive element of F :
g(x) :=

(
x− αa+1

) (
x− αa+2

)
· · ·
(
x− αa+δ−1

)
(where

2 ≤ δ ≤ q − 1) is a generator polynomial (of degree δ − 1)
for a cyclic [q − 1, q − δ]-code over F

It is a Reed-Solomon code, denoted by RS (q − 1, q − δ)
� Minimum distance:
C is a Reed-Solomon code RS(q − 1, q − δ) : d(C) = δ


