MA3218 Applied Algebra

Basic Number Theory

e Division algorithm:
Vae R,beN:dlgreZst. a=bg+rand0<r<b
¢ GCD is divisible by other divisors: d = gcd(a,b) <~
d|laandd|band (Vc:c|aand c|b = c]|d)
e GCD is linear combination:
Va,b € Z* : d = ged(a,b) = Fr,y € Zs.t. ax +by=d
In particular: 1 =ged(a,b) <= Jr,y € Zs.t. ax +by=1
e Coprime properties: Va,b,c€ Z :
ged(a,¢) =1 and ged(b,¢) =1 = ged(ab,c) =1
a|becand ged(a,b) =1 = alc
ged(a,b) =1landa|cand b|c = ab|c
e Multiplicative invertibility:

k € Zp, and ged(k,n) =1 = Jz € Z, s.t. kx =1 (mod n)

Finding x s.t. 192 =1 (mod 391):

391 =19x 20+ 11  (7)391 + (—144)19 =1
19=11x1+8 (—4)19+(M11=1
11=8x1+3 311+ (-4)8=1
8=3x2+2 (-1)8+(3)3=1
3=2x14+1 —— (1)3+(-1)2=1

219 x (—144) =1 (mod 391)
oo = —144 = 247 (mod 391)

Groups

e Definition: Set G with binary op. satisfying:
0. Closure: Binary operation is well-defined over G
1. Associativity: Va,b,c € G : (ab)c = a(bc)
2. Identity: Je € G s.t. Va € G,ea =ae=a
3. Invertibility: Va € G : 3b€ G s.t. ab=ba =€

e Abelian group: Binary op. satisfies commutativity:
Ya,b € G : ab=ba

e Some groups:
Q* := multiplicative group of nonzero rationals
U(n) :=={m € Z, | gcd(m,n) = 1} = group of units in Z,
Qs = {£1,+I,+J,+K} = quaternion group (non-abelian)
where 1 = (6(1))? I= (91(%)7 J= (?(Z))’ K= (6 —Oz)
GL,(F) :={A € Myxn(F) | det(A) # 0} (non-abelian)
SLy(F) :={A € Myxn(F) | det(A) =1}
SL,(F) is a subgroup of GL,(F)
T :={zeC||z| =1} = circle group

e Product of finite order matrices can have inf. order:

A= (0 1) = At=1

—10 . n_(1-—-n
Bz(?:}) . Bi_1 VneN: (AB) —(0 ! );éI
Subgroups
e Basic subgroup test: Is subset H a subgroup of G?
ec € H

Binary op. closed in H
Vhe H:h 'eH

¢ Better subgroup test: Is subset H a subgroup of G?
H+#o
Vg,he H :gh e H

<= H is a subgroup of G

<= H is a subgroup of G

Cyclic Groups
e Definition: G is cyclic <= Jge Gst. (g) =G

Cyclic subgroup generated by a: Va € G :
(a) = {a* | k € Z} = cyclic subgroup generated by a

Every cyclic group is abelian

Every subgroup of a cyclic group is cyclic

Order of elements: If G = (a) and n = |G| # oo then:
VOSREZO(ak):m

o nth

roots of unity = {z | 2" =1}
= {cos (%) +isin (£2) | k € {0,1,2,...,n — 1}}
primitive n'" roots of unity = generators of {z | 2" = 1}

= {w¥ | ged(k,n) = 1} where w = cos (2X) + isin (2F)

n

Permutation Groups
e Sx := symmetric group (group of all permutations) of the
set X; any subgroup of Sx is called a permutation group

o A, ={0 €S, |0 isan even permutation}
= alternating group on n letters

e Size of alternating group: 2|4, | = |S,|

e Transforming a cycle:
o= (z &) = 107t = (7 (71)

T (xn))
e D, = dihedral group of size n = group of symmetries of a
regular n-gon = {r*s¥ |z € {0,1,...,n— 1} and y € {0,1}}
where 7" = id and s = id and srs = r~!

D,, is a subgroup of S,

D, = (r,s|r™ =id and s* = id and srs =r"")
(D, is generated by r and s with those relations)

¢ Rigid motions preserve orientation; symmetries need not
(a right hand must remain right in a rigid motion)

e Definition: H is any subgroup of G. Vg € G :
Left coset containing g = {gh | h € H} = gH
Right coset containing g = {hg |h € H} = Hyg

e Equivalence:
G H=gH << gHCgpH <= g € gpoH<=g,'q1€ H

Hgflegf(:)HgflQHgglﬁgfleHgglﬁ)gflggeH

e Index of a subgroup: H is any subgroup of G :
[G : H] = Index of H in G := number of cosets of H in G

_ lal

= TH] Corollary: |H|||G]
Corollary: All groups with prime order are cyclic
Corollary: For finite groups K C H C G :
[G:K]=|G: H|H: K|
e Euler’s totient function: ¢: N -+ N
1 ifn=1
num. of m s.t. 1 <m <n and ged(m,n) =1 otherwise
Note: |U(n)| = ¢(n)

e Lagrange theorem: [G : H|

nr—

e Euler’s theorem: Va € Z,n € N where ged(a,n) =1 :
a?™ =1 (mod n)

e Fermat’s little theorem: Vp € primes,a € Z where p1{ a :
a1 =1 (mod p)

Cryptography
e Cryptosystem = (P,C,K,&,D)

(plaintexts, ciphertexts, keyspace, encryption rules, decryption rules)

e Shift cipher: ex(x)=2z+k (mod n)
di(y) =y —k (mod n)

e Affine cipher: key = (a,b) where ged(a,n) =1
ex(x) =axr+b (mod n)

di(y) =a ' (y—b)

¢ Generalized affine cipher: key = (A, b) where
A is an invertible matrix and b is a vector
ex(x) =xA+b (modn)
di(y) = (y =b)A™"  (mod n)

(mod n)

e RSA:
Relies on difficulty of determining ¢(n) from n.
n = pq (where p, ¢ are primes) = ¢(n)=(p—1)(¢—1)

public key = (n, E) _
private key = (D) st. DE=1 (mod ¢(n))

er(x) =z, dp(y) = y”

Algebraic Coding Theory

e Definition:
A={a1,as,...,aq} = set of symbols = code alphabet
A word of length n over A is a sequence X = z1x3... %y,
where all z; € A
A block code of length n over A is a nonempty subset C' of A™
An element of C' is a codeword of C
If A=7Zy={0,1} then C is a binary (block) code

e Triangle inequality: d(x,y) < d(x,z) + d(z,y)

o If d(C') = m then: m — 1 or fewer errors can be detected,
and LMT_lJ or fewer errors can be corrected

o d(x,y) =w(x—y)

e Linear code: The code alphabet is a finite field F',
and code C (of length n) is a subspace of F™,
i.e. C is nonempty and Vx,y € C, Va,be F : ax+ by € C
- If dim(C) = m then C is called a [n, m]-code over F
- Furthermore if d(C) = d then C'is a [n, m, d]-code over F

e Minimum weight of a code: w(C) = mingec oy {w(x)}
gn

gi1 - Gin
< . : > € Minxn
gm1 G
where {g1,...,8m} is a basis for C

gmr'ﬂ
Then C = {aG | a € F™} (i.e. a lin. combin. of rows in G)

h;

: ) € M(nfm)xn
h,_m
where {hy,...,h,,_,,} is a basis for the nullspace of G
Then C = {x € F" | Hx' =07}

dc € C where w(c) < e <—
some e columns of H are linearly dependent

g1
e Generator matrix: G = ( : ) =

e Parity-check matrix: H = (

Single-error-correcting code: In particular, C can correct
any single error <= H has no zero column and no two
columns of H are scalar multiple of each other

e Syndrome: sy(x) = (HXT)T e Fr—m
If sy (x) = 0 then no error occurred; if sy (x) = i*® column
of H, then a single error occured at i*" entry of word

¢ Syndrome decoding;:
1. Partition F™ into cosets of C'
2. Pick the coset leader (the word x € F™ with minimum
weight) for each coset
3. Compute the syndrome of each coset leader (i.e.
syndrome look-up table)
4. For each word y € F™ received, use sy (y) to search the
syndrome look-up table for the associated coset leader e,
then decode y toy — e

Group Isomorphisms

e Definition:
Bijective mapping where group operation is preserved

e All cyclic groups of infinite order are isomorphic to Z
e All cyclic groups of order n are isomorphic to Z,,

e Cayley’s theorem: Every group is isomorphic to a
permutation group

Direct Products

¢ External direct product:
G x H = external direct product of groups G and H

e Order of element in external direct product:
v(.gl?"' agn) € HZ:l GS :
o((g91,---,90)) =lem{o(g1),...,0(gn)}
e Cyclic group and GCD:
Loy X Ly = Loy = ged(m,n) =1
e Internal direct product:
If H, K are subgroups of G s.t.:
1. G=HK ={hk|h€ H and k € K}
2. HNK ={e}
3.Vhe H Vk € K : hk =kh
Then G is the internal direct product of H and K

e Isomorphism: Given groups G and H :
Internal direct product = External direct product

e Internal direct product of n groups:
Given group G with subgroups Hy, ..., H, s.t.:
1. G=Hy---H,:={h1 - hy, | hs € H where s € {1,...,n}}
2. HiN(Hy---Hs_1Hs41--- H,) = {e} where s € {1,...,n}
3. Vhs € Hs, Yhy € Hy : hshy = hihg

Then G is the internal direct product of Hy,..., H,

Normal Subgroups
e Definition: Subgroup H of G is called normal if
Vge G:gH =Hg
In particular: If G is abelian then all subgroups are normal
e Equivalence: N is a normal subgroup of G
<= VgeG:gNg 'CN
= VgeG:gNg =N

Quotient Groups

e Definition: Given a normal subgroup N of G :
G/N:={gN|ge G} ={Ng|geG}
G/N is a group (of order [G : N]) with binary operation
(aN) (bN) := abN
G/N is called the quotient group of G modulo N

Homomorphisms
e Definition: Group operation is preserved

e Properties of group homomorphisms:

¢: G — H is a group homomorphism :

- ¢ (eq) is the identity in H

VgeG (g7 =09

- K is a subgroup of G = ¢[K] is a subgroup of H

- L is a subgroup of H = ¢~ ![L] is a subgroup of G

- L is a normal subgroup == ¢~![L] is a normal subgroup
o Kernel: ker(¢) ={g € G| ¢(g) =en}=0¢""[{en}] € G

- ker(¢) is a normal subgroup of G

- ¢ is injective <= ker(¢) = {eq}
e Canonical/Natural homomorphism:

Given a normal subgroup N of G :

¢: G—G/N
g gN
is the canonical/natural homomorphism

Isomorphism Theorems
e First isomorphism theorem:
¢: G — H is a group homomorphism : ¢[G] = G/ ker (o)

e Second isomorphism theorem: Arrow=subgroup: G

H is a (not necessarily normal) subgroup of G, I
and N is a normal subgroup of G : HN
-HN:={hn|he€ H and n € N} is a subgroup of G /™
- HN N is a normal subgroup of H N H

-H/(HNN)=(HN)/N

e Third isomorphism theorem:
H, N are normal subgroups of G s.t. N C H :
- H/N is a normal subgroup of G/N
-G/H=(G/N)/(H/N)

N

HNN

22— I —0



Rings

e Definition: Abelian group R with additional properties:
- Multiplication is associative: Va,b,c € R : (ab)c = a(bc)
- Addition and multiplication satisfy distributive laws:
Va,b,c € R: a(b+c) =ab+ ac and (b+ c)a = ba + ca

e Special rings:

Ring with identity: 31 € Rs.t. Vae R:al =a = la
Commutative ring: multiplication is commutative
Integral domain: commutative ring with identity s.t.

VYa,be R: (ab=0 = a=0o0rb=0)
Division ring: ring with identity s.t.

Va € R\ {0} : ais a unit

(ie. Ja~' € Rst. aa™' =1=a"1a)

Field: commutative division ring

Rings

Commutative Rings/ Rings with identity

Integral Domains Division Rings

Fields

e Some rings: Vn € N : Z,, is commutative ring with identity
n is composite => Z,, is not an integral domain
M, x»(F) is a (non-commutative) ring with identity
Qs is a (non-commutative) division ring
Z x 27 is a ring without identity that has
a subring Z x {0} with identity (1,0)

e Zero divisors: If a # 0 and b # 0 but ab = 0 then:
a is a left zero divisor and b is a right zero divisor

An element that is both a left and right zero divisor
is called a zero divisor

Subrings
e Definition: A subring S or a ring R is a subset of R s.t. it
is a ring using the same addition and multiplication of R

e Subring test: Is subset S a subring of R?
S#£g
Vr,s€S:r—ses
Vr,s€S:rses

<= S is a subring of R

Cancellation Law

e Let D is a commutative ring with identity :
Ya,b,c € D with a # 0 :

D is an integral domain <=
ab=ac = b=c

¢ Finite integral domain:
Every finite integral domain is a field

Characteristic of a Ring
¢ Definition: char(R) := smallest n € Nst. Vae R:na=0
where na :=a+a+---+a
—_—

n times

If no such n exists, then char(R) := 0
¢ Rings with identity: In any ring with identity R :
o(1) =n # oo = char(R) =n
(additive order)

e Integral domain: In any integral domain R :
char(R) is prime or zero

Ring Homomorphisms and Ideals

Ring Homomorphisms
e Definition: Addition and multiplication are preserved

e Properties: Given a ring homomorphism ¢: R — S :
- ¢[R] is a subring of S
- R is commutative = ¢[R] is commutative
- ¢(0r) = 0g
- Suppose R and S have identities 1z and 1g resp.
¢ is surjective = ¢ (1g) = 1g
- Suppose R is a field : ¢[R] # {0} = ¢[R] is a field

Ideals

e Definition: An ideal I of a ring R is a subring of R s.t.
VreR:rI CIlandIrCl1

e Trivial ideals of R: {0} and R

e Proper ideals of R: All ideals that are not R itself

e Ideal test: Is subset I of R an ideal?
I1#+£3
VYa,bel:a—bel
Vaelandr € R :ra,ar €1

e Principal ideal: Let R be a commutative ring with
identity : Principal ideal of a € R := aR (it is an ideal)

<= ] is an ideal

e Ideals of Z: Every ideal of Z is a principal ideal

e Kernels of ring homomorphisms:
Given any ring homomorphism ¢ : ker(¢) is an ideal

Quotient Rings
e Definition: Given any ideal I of ring R
R/I = {r+1|r € R} is the quotient ring of R modulo I

R/I is a ring with these operations:
(r+D+(s+1)=(r+s)+1
(r+D(s+1I)=rs+1

e Canonical/Natural homomorphism:
Given an ideal I of R :

¢: R— R/I
r—=r4+1

is the canonical/natural homomorphism

Isomorphism Theorems
e First isomorphism theorem:
¢: R — S is a ring homomorphism : ¢[R] = R/ ker(¢)
e Second isomorphism theorem:
S is a subring of R, and [ is an ideal of R :
-S4+ I={s+a|se€Sandacl}isasubring of R s+
- SN1is an ideal of S
-S/(SNn)y=2(S+1)/I | s
e Third isomorphism theorem:
I, J areideals of Rs.t. JC I :
- I/J is an ideal of R/.J
- R/T=(R/J)/(1/T)

Arrow=subring: R
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Maximal and Prime Ideals
e Maximal ideal: A proper ideal M of a ring R is a
maximal ideal if M is not a proper subset of any ideal of R
except R itself
i.e. Iisanideal of Rst. M CI — I=MorI=R

All rings with identity have at least one maximal ideal

e Field from maximal ideal: Let R be a commutative ring
with identity and M an ideal of R :
M is a maximal ideal <= R/M is a field

e Prime ideal: A proper ideal P of a ring R is a prime ideal
if Va,b,€ R : abe P =— ac€PorbeP

e Integral domain from prime ideal: Let R be a
commutative ring with identity and P and ideal of R :
P is a prime ideal <= R/P is an integral domain

e Maximal — Prime: Every maximal ideal in a
commutative ring with identity is also a prime ideal

Prime ideal that is not maximal:

Given an integral domain R that is not a field,
R[z]/xzR[z] & R is an integral domain that is not a field,
so zR[z] is a prime ideal but not a maximal ideal

Chinese Remainder Theorem

Definition: Vni,ng,...,n, € N with no common factors
(iie. Vs £t : ged(ng,ng) = 1)
Let n =nins...ng. Then:
@ Ly, = Lipyy X Lipy X -+ X Ly,
x +— (x (mod ny),z (mod ng), ...,z (mod ng))
is an isomorphism

Gl =y X Ly X - X Ly,

Polynomials

R is a commutative ring with identity, F' is a field

Monic: leading coefficient is 1
Degree of zero polynomial is —oco

R is a commutative ring with identity = R[] is a
commutative ring with identity

R is an integral domain = R[z] is an integral domain
Evaluation mapping: ¢,: R[z] = R
p(x) = p(a)

The evaluation mapping is a ring homomorphism

Division algorithm: Vf(z),g(z) € Flx] :
g(z),r(x) € Flz] s.t.

f(x) = q(x)g(x) + r(z) and deg(r(z)) < deg(g(x))
Number of roots: V0 # p(x) € F[z]

deg(p(z)) =n = p(z) has at most n roots in F

GCD: Monic polynomial of highest degree that is a divisor
of both polynomials; use the Euclidean algorithm to find
GCD is linear combination: Vf(x),g(x) € F :
d(x) = ged(f(z), g(x)) =

Jda(z),b(z) € Z s.t. a(z)f(z) + b(z)g(x) = d(x)
Reducibility: f(z) € F|x] is reducible over F' if
f(z) = g(z)h(z) for some g(x), h(z) € F[x] where
0 < deg(g(x)) < deg(f(x)) and 0 < deg(h(z)) < deg(f(z))

Principal ideals: Every ideal of F[z] is principal

Maximal ideals: Vp(z) € F[z] (not necessarily monic)
p(z)F(z) is maximal ideal <= p(x) is irreducible over F

Modulo arithmetic:

Fla;p(a)] = {f(z) € F(z) | deg(f(z)) < deg(p(z))} (with
usual addition, and multiplication modulo p(x)) is a
commutative ring with identity

Furthermore, F[z; p(x)] & Flx]/p(x) Fx]

Algebraic extension of fields:

The polynomial 22 — 2 is irreducible over Q.

As /2 is a root of 2 — 2,

Q(V?2) = {a\/§—|— b|a,be Q} is an extension field of Q.

|Finite Fields]

Zp is a finite field <= pis prime = Z7 is cyclic
Characteristic of a finite field is prime
Order (num. of elements) of a finite field is a prime power

Polynomial x? — x: Let F be a finite field of order ¢q :
(VBeF:p1=p) and [[gep (@ —B) =27~z
Existence and uniqueness:

Vp € primes and k € N : there exists a unique (i.e.
isomorphic) finite field of order p*, denoted as GF(q) or F,

e Constructing a finite field of order p*:

If k =1, just take F, = 7Z,
Else:

1. Find a monic irreducible polynomial f(x) € Fp[z] of
degree k, i.e. f(z)=a" +rp_12* 1+ 4+ 72+ ro where
70,71y, Tk—1 € Fp

2. Let 8 be a new element such that f(8) =0, i.e.

BF = —(rra Bt 4 B +ro)
3. Then Fr» = Fp(B) =

{sk—1BF 1+ + 518 +70 | s0,51,..

., Sk—1 € Fp} is a field
of order p*

Primitive element: Given a finite field ' :
the (multiplicative) group F* := F'\ {0} is cyclic
A generator of F* is called a primitive element of F'

F has order ¢ and « is a primitive element of F' :

M5 (x—a’) =t =1

Primitive polynomial: Given a finite field Fy :

f(z) € Fy[x] is a primitive polynomial over F if:

1. f(x) is irreducible over Fp, and

2. avis a zero of f(x) == « is a primitive element of Fy(«)

Cyclic codes

e Definition: C € F" is a cyclic code if:

1. C is a linear code, and
2. ¢ =cpciCy...Cp_1 is a codeword =
cyclic shift s(c) == ¢,_1¢0¢1 - - - ¢r—z 18 also a codeword
Polynomial representation:
A word a = agay ...d,_1 € F™ is represented by
a(z) =ag+ax+-+a,_12° 1 € Flz;a™ — 1]
This mapping is a vector space isomorphism

Cyclic code < ideal: C' C F™ is a cyclic code <=
C' ={c(x) | c € C} is an ideal of F[z;2™ — 1]
Generator polynomial: Let C C F™ and
C'={c(x)|ce C} C Flz;z™ — 1]
C'is a cyclic [n, k]-code <= 3 monic g(x) € F[z] s.t.
g(x) [ 2" =1
deg(g(x)) =n -k
C'={f(x)g(x) | f(z) € Flz] and deg(f(x)) <k —1}

Given a cyclic code C, the monic polynomial in ¢’ with
least degree is the generator polynomial

Constructing cyclic code from generator polynomial:
To construct a cyclic [n, k]-code C:

1. find a polynomial of degree n — k that divides 2™ — 1

2. Use it as the generator polynomial

Constructing generator and parity check matrices:
Given a generator poly. g(z) =ap+ a1z +--- + Ay F
with deg(g(z)) =n—k :

g(x) ag ap - e ap—r O - 0 O
G = zg(z) — 0 ap a1 =+ -+ Qn_ 0 -~ O
zkflg(m) 0 - e 0 ao ap oo An—k

hr(x) he hk—1 - - hg 0O - 0 O
H = zhr(z) _ 0 hi hp_q - - ho 0 = 0O
" hp(x) 0 - o0 hy hgq e e ho

where h(z) = (0”972;)1) =ho + b1z + - - + hya® is the parity

check polynomial, and hg(x) is coef.-reversed monic of h(x)

Reed-Solomon Codes
e Definition: Given a finite field F' of order ¢, and « a

primitive element of F' :

g(z) = (z— ) (z — a®™?) -+ (z — a2~1) (where

2 <§ < qg-—1)is a generator polynomial (of degree 6 — 1)
for a cyclic [q — 1,q — d]-code over F

It is a Reed-Solomon code, denoted by RS (¢ — 1,q — §)

e Minimum distance:

C' is a Reed-Solomon code RS(qg —1,¢g—9) : d(C) =



